Cell Cycle and Cell Division

Cell cycle

- It is defined as a series of events that takes place in a cell, leading to the formation of two daughter cells.
- The average duration of a cell cycle for a human cell is about 24 hours and for yeast cell, it is about 90 minutes
- o Cell cycle is divided into two basic phases: Interphase and M phase

Interphase

- Interphase involves a series of changes that prepares the cell for division. It involves the period of cell growth and DNA replication in an orderly manner.
- It is divided into three phases:
- **G**₁ **phase** It involves growth of cell and preparation of DNA replication.
- **S phase** It involves DNA replication. The amount of DNA doubles, but the chromosome number remains the same.
- **G**₂ **phase** It involves protein synthesis and further growth of cell, which prepares it for division.
- **G**₀ **phase or quiescent phase** It is the stage when metabolically active cell remains quiescent for long period of time.

• Significance of Cell Division

- o It is the mean of asexual reproduction in unicellular organisms.
- It is essential for the growth of a single celled zygote into a whole new multicellular organism.
- o It helps in the repair of injuries and worn out tissues.
- o It replaces dead cells of the body and thus is essential for growth of organism.

In sexual reproduction, meiosis occurs. This type of cell division not only results in production of gametes, but also brings new combinations of genes, thus resulting in variations among a population. This also leads to evolution of a species.

Mitosis

- o It is a process of cell division where chromosomes replicate and get equally distributed into two daughter cells. Hence, it is also called equational division.
- The process of mitosis keeps the chromosome number equal in daughter as well as parental cell.
- Mitosis usually takes place in somatic cells.
- Mitosis involves four stages:

Prophase

- It involves initiation and condensation of chromosomes.
- Nucleolus and nuclear membrane disappear.

Metaphase

• Chromosomal material condenses to form compact chromosomes that get aligned in the middle of nucleus at equatorial plate.

Anaphase

 Centromere splits and chromosomes move apart towards two opposite poles due to shortening of spindle fibres

Telophase

- Chromosomes finally reach their respective poles.
- Nuclear envelope assembles around each chromosome cluster.
- Nucleolus and other organelles reform.

Karyokinesis and Cytokinesis

- Karyokinesis is the division of nucleus during mitosis or meiosis that is followed by cytokinesis.
- Cytokinesis involves the division of cytoplasm of a cell.

- Cytokinesis is achieved in animal cell by cleavage that deepens and divides the cell into two.
- It is achieved in plant cell by cell plate formation.
- When karyokinesis is not followed by cytokinesis, a multinucleate condition arises. This is called syncytium.

Significance of mitosis

- o It results in the formation of diploid daughter cells with identical genetic material.
- Mitosis plays a significant role in cell repair, growth, and healing.

Meiosis

- It is the process which involves the reduction in the amount of genetic material.
- It mainly occurs in germ cells.
- At the end of meiosis II, four haploid cells are formed.
- It is comprised of two successive nuclear and cell division with a single cycle of DNA replication.
- The phases of meiosis are as shown below-

Meiosis I

1. Prophase I – It comprises of 5 stages:

o i. Leptotene

Chromosomes start condensing.

ii. Zygotene

- Pairing of chromosomes called synapsis occurs.
- o A pair of synapsed homologous chromosomes is called bivalent or tetrad.

o iii. Pachytene

- Exchange of genetic material (crossing over) between non-sister chromatids occurs.
- Chiasmata formation

o iv. Diplotene

 Bivalents formed during pachytene separate from each other (except at chiasmata) due to dissolution of synaptonemal complex

o v. Diakinesis

- Terminalisation of chiasmata can be observed.
- By the end of this stage, the nucleolus disappears and the nuclear envelope breaks.

2. Metaphase I

o Bivalents (tetrad) get aligned along metaphase plate through spindle fibres.

• 3. Anaphase I

 Homologous chromosomes separate while chromatids remain attached at their centromere.

Telophase I

- o Nucleolus and nuclear membrane reappear around chromosome cluster at each pole.
- **Interkinesis** It is the stage between two meiotic divisions.
- Meiosis II
- 1. Prophase II
- Chromosomes become compact.
- o Nuclear membrane disappears.

2. Metaphase II

- o Chromosomes align at the equator.
- Kinetochores of sister chromatids attach to spindle fibres at each pole.

• 3. Anaphase II

- o Chromatids separate by splitting of centromere.
- As a result, chromatids move towards their respective poles in the cell.

• 4. Telophase II

- Nuclear envelope reforms around the chromosome clusters.
- After meiosis II, the process of cytokinesis results in the formation of four haploid cells (tetrad of cells).

Significance of meiosis:

It brings about variation.

It maintains the chromosome number constant from generation to generation.